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Results

Circulating Fluidized Bed Reactor
Products Clusters are generated

spontaneously due to
—
unsteadiness in the flow.

Products

Riser
Interaction between clusters
and the gas phase have been

observed to ‘de-mix’ the
carrier phase in fluidized

beds. shaffer et al. (2013)

This then reduces contact

between phases and impedes

Beetham & Capecelatro (2019)

thermochemical conversion.
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Circulating Fluidized Bed Reactor

Products Clusters are generated

Products
Riser
“usters

For single-phase pipe ﬂovv /th / D = 0. 05ReDPr : been

e

Multiphase correlations do not ex1st ed

beds. shaffer et al. (2013)

spontaneously due to
unsteadiness in the flow.

This then reduces contact
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thermochemical conversion.
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‘Nuaslet number characlerizes heal transfer

Barker (1965)
100 {[Gunn’s exp. (1974) 0 % o o
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2 o|Gunn (1974)
104 °° ©
o [ Littman et al. (1968)]
° sz
_/
1 : :
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Re

¥~ Nu spans several orders of
magnitude at the large scale.

¥ The Gunn model doesn’t capture
this variation at these scales.

¥~ We hypothesize this is due to
heterogeneity.
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*¥ Nu spans several orders of =

A Recent correlations from highly
magnitude at the large scale.

resolved, homogeneous simulations

¥ The Gunn model doesn’t capture match the Gunn correlation well.
this variation at these scales. Tenneti et al. (2013)

¥~ We hypothesize this is due to
heterogeneity.
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Simple, 1D models for temperature are used when models that
predict heterogeneity are not available.

Auid particles
Tr, gaseous char
Ubulk Up # Ubulk
— hot .1 L 7 cold
Syngas ’
e char, sand

Computational
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Fully-developed
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Multiphase flows impact thermochemical processes

Simple, 1D models for temperature are used when models that
predict heterogeneity are not available.
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Multiphase flows impact thermochemical processes

Simple, 1D models for temperature are used when models that
predict heterogeneity are not available.
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Multiphase flows impact thermochemical processes

Simple, 1D models for temperature are used when models that
predict heterogeneity are not available.
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Multiphase flows impact thermochemical processes

Simple, 1D models for temperature are used when models that
predict heterogeneity are not available.
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Multiphase flows impact thermochemical processes

Simple, 1D models for temperature are used when models that
predict heterogeneity are not available.
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based on ¢ and Rep exist
to account for particles.

Particle

temperature

Capecelatro Riesearch Group



Background Methodology Results Modeling

Multiphase flows impact thermochemical processes

Simple, 1D models for temperature are used when models that
predict heterogeneity are not available.
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In this talk, we

1. quantify the effect of clustering
on thermal development length,
and

2. develop coarse-grained models
that incorporate multiphase effects
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7in Euler-lagrange approach

Simulations solved using NGA:
[* Finite volume DNS/LES code

5
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7in Euler-lagrange approach

Simulations solved using NGA:

[* Finite volume DNS/LES code

¥~ Conservation of mass, momentum and kinetic
energy

1]
2 (erprur) +V - (efprusur) = V - T+ €7prg8 + Finter

8
Bt (erprCorTr) + V- (erprurCorTr) = V - (kfV T¢) + Qinter
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7in Euler-lagrange approach

Simulations solved using NGA:

[* TFinite volume DNS/LES code

[®¥" Conservation of mass, momentum and kinetic
energy

1]
EP (erprur) +V - (efprusur) = V - T + €7prg + Finter

el
Bt (e¢pfCo e TF) +V - (erprusCp s Te) = V - (kfVTf) + Qinter

[® Tagrangian particle tracking (Newton’s 2nd law)

du<i) i i
P _ () (N
P4 Finter T Feol + mpg
arf) ;
P _ )
mpCp,p at heat

¥~ Soft sphere collisional model
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7in Euler-lagrange approach

Interphase exchange employs a two-step filtering approach
¥~ Volume fraction:

Np
er=1-36(x—x") v,
i=1

Results

[ Momentum exchange 1\ 1. Data is sent to
111 neighboring grid
Finter = — Z g (\X X ) inter = [T points.

| |- (ZI
finter = VpV - ¢ + mp— (Uf - u ) F(ef, Rep) ——:*— 2. Solution diffused
N—— p

] with characteristic
resolved 4 .
Tenneti et al. (2013) I T.}g size
[#¥ Heat exchange I o

N

Qnter = = 36 (1x = x) 4,

i=1

0] 6VpkeNu N
Theat = YoV - (VY Tp) b —F J— (e = 7)
< 2

resolved —

unresolved

™ Nu is modeled using closure by Sun et al. (2015)
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¥~ Initially, particles are randomly
distributed and gas is flowing
at Upylk-
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¥~ Initially, particles are randomly
distributed and gas is flowing
at Upylk-

¥~ Reduced drag, due to two-way
coupling, leads to spontaneous
clustering.
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¥~ Initially, particles are randomly
distributed and gas is flowing
at Upylk-

¥~ Reduced drag, due to two-way
coupling, leads to spontaneous
clustering.

¥~ Two-way coupling between
phases induces turbulence in
gas phase.
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¥ AT between the phases is
imposed

After a stationary state is reached:
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Results

7 wo-alep, £ulenan Lagranqtan approach

Isothermal domain

After a stationary state is reached:

¥ AT between the phases is
imposed.

® y — 7 planes of gas and
particle data are injected into
the thermal domain until a
thermally steady state is
reached.
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Methodology
[e]e]e] )

paramelers

Computational parameters:

(Lx x L, x L) (0.158 x 0.038 x 0.038) [m]

(Nx x N, x Nz) (512 x 128 x 128)
pp/pf 1000
dp 90 pm
vf 1.8 x 107% kg/m s
Cp r 1.013 [kg/kg K]
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Computational parameters:

(Lx x L, x L) (0.158 x 0.038 x 0.038) [m]

(Nx x N, x Nz) (512 x 128 x 128)
pp/pf 1000
dp 90 pm
vf 1.8 x 107% kg/m s
Cp r 1.013 [kg/kg K]

Simulation parameters perturbed for modeling:

Cop
840 (sand)
921 (catalyst)
2300 (biomass)
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(Lx x L, x L) (0.158 x 0.038 x 0.038) [m]

(Nx x N, x Nz) (512 x 128 x 128)
pp/pf 1000
dp 90 pm
vf 1.8 x 107% kg/m s
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Methodology
[e]e]e] )

paramelers

Computational parameters:

(Lx x L, x L) (0.158 x 0.038 x 0.038) [m]

(Nx x N, x Nz) (512 x 128 x 128)
pp/pf 1000
dp 90 pm
vf 1.8 x 107% kg/m s
Cp r 1.013 [kg/kg K]

Simulation parameters perturbed for modeling:

Co.p Pe (ep) Np
840 (sand) 1 0.001 610,370
921 (catalyst) 5 0.0255 15,564,442
2300 (biomass) 7 0.05 30,518,514

Quantities chosen with circulating fluidized bed reactors in
mind.
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In this talk, we

1. quantify the effect of clustering
on thermal development length,
and

2. develop coarse-grained models
that incorporate multiphase effects
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Heterogeneily plays an importand role

(ep) = 0.001 and Pe = 5

I uniform
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Heterogeneily plays an importand role

Clustering results in a 2-3 fold increase in thermal development
length when compared to a uniform distribution of particles.

3
2T 95 _
= 49 I~ |, is length after which both
= phases are within 5% of each other.
2 e l& is the development length for an
uncorrelated distribution.

0.001 0.0255 0.05

{ep)

Volume fraction and Péclet number have the most pronounced
effect. The effect of x is minimal.
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'I'Ieteroqelwdy playA an unportant role
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llh /llh
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(ep)

O0®000000

1

0.8
0.6

0.4

0.2

(ep) = 0.0255, Pe = 5|

100 200 300 400 500
x/d,

An idealized model (perfect mixing, uniform particles), under pre-

dicts thermal entrance length.
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Methodology

Scaling laws for -aotid flows

Recall that for single-phase, pipe flow:

/th = 0.05R6DPI‘
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Scaling laws for gas-solid flows

Recall that for single-phase, pipe flow:
/th = 0.05R6DPI‘
For a uniform distribution of particles,

1% = 0.108Repu Pr(e,)
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8 laws for gas-solid flows

Recall that for single-phase, pipe flow:
It = 0.05RepPr
For a uniform distribution of particles,
1% = 0.108Repu Pr(e,)
For a correlaled particle phase,

5/2

Reby _
Iy = 0.64L " (0.1 Pk | (.02 Refgulk> +0.108 Repuy Pr (e,) 7,
(ep) (ep)
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laws for gas-solid flows
Recall that for single-phase, pipe flow:
It = 0.05RepPr
For a uniform distribution of particles,
1% = 0.108Repu Pr(e,)
For a correlaled particle phase,

5/2

Reby _
Iy = 0.64L " (0.1 Pk | (.02 Refgulk> +0.108 Repuy Pr (e,) 7,
(ep) (ep)

where A/ <€;32> = 148<€p> (055 — <6p>) (modified from Issangya et al. (2000))
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Ignoring multiphase effects has
important industrial implications.

What drives these differences?
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Spalially 1D auer energy equalion

Configuration statistically 1D in the stream-wise direction.
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Spalially 1D auer energy equalion

Configuration statistically 1D in the stream-wise direction.

[*~ Time and spatial averages denoted by ().
& Phase averaging defined as () = (er())/(er) and {()}p = (ep()}/(ep).
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atiauy D auer energy equalion

[e]o]e]e]e] Ie]e]e]

Configuration statistically 1D in the stream-wise direction.
[*~ Time and spatial averages denoted by ().

D& Phase averaging defined as ((-))r = {e())/{er) and {())p = (ep())/(ep)-
[#~ TFluctuations from mean quantities: ()" = (-) — ((-))r and (-)"” = (-) = {(-))
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Spalially 1D auer energy equalion

[e]o]e]e]e] Ie]e]e]

Configuration statistically 1D in the stream-wise direction.
[*~ Time and spatial averages denoted by ().

D& Phase averaging defined as ((-))r = {e())/{er) and {())p = (ep())/(ep)-
[#~ TFluctuations from mean quantities: ()" = (-) — ((-))r and (-)"” = (-) = {(-))

d(Or)r 1 d2(0¢)f d i m
o - — = — g0
@) — o Pe a2 AN
N —
Term 1
6(cp) " i 1111
_7{(Nu),J ((O)F — (0p)p) + (Nu)p(OF ") p + (Nu" 0F") p — (Nu 0, )F}, and
Pe(ef) e e —— —
Term 2 Term 3 Term 4 Term 5
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patiauy D auer energy equation

[e]o]e]e]e] Ie]e]e]

Configuration statistically 1D in the stream-wise direction.
[*~ Time and spatial averages denoted by ().

D& Phase averaging defined as ()7 = (er(-))/(e7) and ()5 = (£6())/ (<.
[*¥ Tluctuations from mean quantities: ()" = (-) — ((-))r and (-)"” = (-) = {("))p -

d(6r)¢ 1 d*(6r)¢ d g
o - — = — g0
@) — o Pe a2 AN
Nl
Term 1
6{ep) 1" 111 11011
— P [ (Ma)p (8 ) — (8p)p) + (Nu)p (07 )p + (N6 ) p = (N8} |, and
Pe (ef) —_—— . e —— e\
Term 2 Term 3 Term 4 Term 5
P 1 d%(6p)p 1
ol g~ XPe axz axplele
——
Term 6

N——

= [Ny ((B) 7 = (8p)p) + (Nu)p (8" + (N 67)p = (M6} ]
x Pe —_———— — — ———
Term 2 Term 3 Term 4 Term 5
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‘Which termas dominale in the thermal equation?
In the fluid phase:

0.002 ‘ ‘ ‘ 0.002 ‘ ‘ ‘

: :
S 0001} = 0.001
5 5
3 0 3 e
< —0.001] < —0.001|

—0-0020"560 1,000 1,500 —0-0020"560 1,000 1,500

z/d, z/d,
Uniform Clustered

~ d(0r)r 1 d2<9f>f d
S - — )
O T Pe ax2 & e
N —
Term 1
6(ep) 1" 10t 10t
- [(Nu)p ((0)¢ = (8)p) + (Nup(6F ) + (N 07, — (N6} |
Pe(efp) oo o ———

Term 2 Term 3 Term 4 Term 5
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[e]o]e]e]e]e] Jole]

Wluchternwdommatemthethermalequatwn?

In the fluid phase:

0.002 0.002
o) )
g 0.001} g 0.001]
k= ks
2 0 3 (e
< —0.001] < —0.001|
—00020500 1,000 1,500 —00020500 1,000 1,500
x/dp x/dp
Uniform Clustered
2
(af>fd<§;>f _ é d d(f;)f _ %(B;—”@;—”)f
KR
Term 1
- | (N (07 (N6 — (N0, |
e (ef) —_— — —— —
Term 2 Term 3 Term 4 Term 5
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‘Which termas dominale in the thermal equation?
In the fluid phase:

0.002 ‘ ‘ ‘ 0.002 ‘ ‘ ‘

: :
g 0.001} g 0.001]
k= k=
3 0 2 O
< —0.001] < —0.001|

—00020500 1,000 1,500 —00020500 1,000 1,500

z/d, x/d,
Uniform Clustered

N d(0r)f 1 d2<9f>f d
— - ]
=gz Pe ds2 & e
N
Term 1
6¢ep)
— 2 [(Nubp ({8 )r = (8p)p) + (Nu)p (07 + (N6 )p — (N6, ]
Pe (ef) L« ~— — e —— ——

Term 2 Term 3 Term 4 Term 5
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These balances imply that the heat transfer in clustered flows
can be accurately described by

<af>fd<§>f<>f - 7pi<5<§i> [<N“>p ((Br)r — (Op)p) + <Nu)p(0’f”>P]
and
(@) d<§;>P - X(;e [<N”>P ({Or)r — (Bp)p) + <Nu)p(9;”>,,}

[® Terms involving solution variables (i.e., (be/p)/ps (€F/7p)s (Ofp)ep) are closed.

I~ (9"}, is unclosed and represents the fluid temperature fluctuations seen by
£lp
the particles, or the ‘drift temperature’.

Can we formulate a model for (f7), that is accurate across
flow parameters?
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In this talk, we

1. quantify the effect of clustering
on thermal development length,
and

2. develop coarse-grained models
that incorporate multiphase effects
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‘7 ing the d”ﬂ el'atw'e

We first lump constant coefficients in the simplified equations
into ¢; and G

d(f)r _ 6(zp)Nu ) ;

= o e oy [00)r — Op)s) + (07)5]
and N
d(0p)p _ 6Nup

dx (i1p)p x Pe [(<9f>f — (Op)p) + <91lfll>p]
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Modeling the drift temperature

[ Jeeje]e]e]

We first lump constant coefficients in the simplified equations
into ¢; and G

Wkt — ., [(0r)r — 0010) + (0]
and a8
Oebe — o[ (0r)¢ — On10) + 07")
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7 the drift eratwe

We first lump constant coefficients in the simplified equations
into ¢; and G

Wt — ()~ 1) + 0]
and 46
Belo — o[ (00)¢ ~ 0010) + 017,]

Solving for the drift temperature in the fluid phase,

—cu@n = S0 1 1 (001 - 00)0)
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7 the drift eratwe

We first lump constant coefficients in the simplified equations
into ¢; and G

W — [~ 0)0) + (0]
and 46
el _ ¢, (001 — 6010) + 7]

Solving for the drift temperature in the fluid phase,

-G <0lf//>p =

+ G (<9f>f - <9p>p)

and scale this expression by the difference in phase

temperatures,
_ O 1 d(B¢)¢ -
“ (0F) — (0p) — ((6f) — (6p)) ( dx + C1 ((Br)r <9p>p))
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7 the drift eratwe

000000000 [o] Jeje]e]e]

All cases considered scale linearly with the difference in phase
temperature:

1 d{0r) B B -
(<6f><9,,>)( & Haln <9p>>> — b ({(0) — (6,) + 1)
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000000000 080000

Modeling the drift temperalture

All cases considered scale linearly with the difference in phase
temperature:

1 d{0r) B B -
(<6f><9,,>)( & Haln <9p>>> — b ({(0) — (6,) + 1)

This implies the drift temperature can be modeled in the form,

) 2 00— 00 (00)— 0+ 1),
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m the drift eratwe

To determine the dependence of b on system parameters ((¢p),
Pe), we employ gene expression programming*.

b= (1.161n((ep)) — 0.335Pe + 5.85(ep)Pe + 19.7) 1/ (¢2) (1 - e_<5p>/Pe>
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Modeling the drift temperalture

To determine the dependence of b on system parameters ((¢p),
Pe), we employ gene expression programming*.

b= (1.161n((ep)) — 0.335Pe + 5.85(ep)Pe + 19.7) 1/ (¢2) (1 - e_<5p>/Pe>

((ep), Pe, X)
(0.001, 5, 829) (0.0255, 7, 829) (0.05, 5, 829)
1 1 1
n 08 0.8
< <06 <06
= = i = H
?z 0.4}, c\g: 0.4 < 0.4f
0.2} 02]% 0.2}
001,000 2,000 3,000 4,000 057250 500 750 1,000 05100 200 300 300 500
z/d, z/d, x/d,
Euler-Lagrange  Learned model
fluid --
particle --

* Searson (2009)
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In this work, we
[®¥~ demonstrated that clustering increases thermal length by 2-3 times

#¥" formulated scaling relations for both uncorrelated and correlated gas-solid
flows
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In this work, we
demonstrated that clustering increases thermal length by 2-3 times

formulated scaling relations for both uncorrelated and correlated gas-solid
flows

0¥~ determined that the drift temperature, (¢,07), is the sole term responsible
for explaining impeded heat transfer
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In this work, we

¥~ demonstrated that clustering increases thermal length by 2-3 times

#¥" formulated scaling relations for both uncorrelated and correlated gas-solid
flows

0¥~ determined that the drift temperature, (¢,07), is the sole term responsible
for explaining impeded heat transfer

®¥ proposed a closure for the drift temperature that reduces model error by
90%.
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Questions?

This work is supported by the National Science Foundation

(CBET-1846054 and CBET-1904742). Simulations were
carried out on Stampede2 (XSEDE, ACI-1548562)
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.
Conneclions with the logislic equation

The heat equations for each phase can be combined to define an
equation for the mean temperature difference,

(0a) = (0F) — (0p):

W) (‘“1 TG "“E CQ)) (6a) <1 b j92)#7)
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.
Conneclions with the logislic equation

The heat equations for each phase can be combined to define an
equation for the mean temperature difference,

(0a) = (0F) — (0p):

df$> = <—(C1 + G) + b(C1C1 C2)> (Oa) <1 ~ b Eeéf)/[)

Recall, the logistic equation takes the form:

dA A
— =kA[(1—-—
dx ( L>
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The heat equations for each phase can be combined to define an
equation for the mean temperature difference,
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Recall, the logistic equation takes the form:

dA A
— =kA[(1—-—
dx ( L>

= Stable attractor at (da) =0
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Conneclions with the logislic equation

The heat equations for each phase can be combined to define an
equation for the mean temperature difference,

(0a) = (0F) — (0p):

W) (‘“1 TG "“E CQ)) (6a) <1 b j92)#7)

Recall, the logistic equation takes the form:

dA A
— =kA[(1—-—
dx ( L>

= Stable attractor at (da) =0
B When b = 0, no clustering and uncorrelated equation is
returned.
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.
Conneclions with the logislic equation

The heat equations for each phase can be combined to define an
equation for the mean temperature difference,

(0a) = (0F) — (0p):

W) (‘“1 TG "“E CQ)) (6a) <1 b j92)#7)

Recall, the logistic equation takes the form:

dA A
— =kA[(1—-—
dx ( L>

= Stable attractor at (da) =0

B When b = 0, no clustering and uncorrelated equation is
returned.

B The magnitude of b indicates level of impedance to heat
transfer.
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